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ABSTRACT

e 1
‘In a previous report [ 2], the authors have established a least-element *

interpretation to Mangasarian's theory [5], [ 6] of formulating some linear

complementarity problems as linear programs. In the present report, we

extend our previous analysis to a more general class of linear complementarity
15 et Lud, 4 f
problems investigated in Mangasarian [ 7]. Our purposes ‘are (1) to

demonstrate how solutions to these problems can be generated from least

.

/&
y : /
elements of polyhedral sets and (}+o investigate how these "least~element

b

solutions" are related to the solutions obtained by the linear programming

approach as proposed by Mangasarian. :
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A LEAST-ELEMENT THEORY OF SOLVING LINEAR COMPLEMENTARITY

PROBLEMS AS LINEAR PROGRAMS

s
*
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Richard W. Cottle and Jong-Shi Pangﬁ

1. INTRODUCTION

In this paper, we study the linear complementarity problem of finding

a vector x ¢ R" satisfying
3t
{1.1) x>0, g+Mx>0 and x (g + Mx) =0

where the given n-vector g and n Xn matrix M satisfy the following

three assumptions:

(M1) MX = Y+ch
(M2) rTx o sTYZO
(M3) rIX +C) +s(Y+C)>0

where X and Y are suitable Z-matrices (i.e. real square matrices
whose off-diagonal entries are non-positive), C is a diagonal matrix
whose diagonal elements are the components of the vector ¢, and r,
s and c¢ are some non-negative vectors. We denote problem (1.1) by

the pair (g, M). Its feasible set is defined as the polyhedral set

X(@,M) = {x e R":x>0, g+Mx>0} . {
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The linear complementarity problem (g, M) with the vector g
and matrix M satisfying conditions (M1) - (M3) has recently been
studied by Mangasarian [ 7] who shows that such a problem can be

formulated as the linear program

L G, minimize pTx subjectto x>0 and q + Mx >0

where p =r + MTs. Our purpose in this report is to show that this result
is related to a theory of polyhedral sets having least elements. (A vector
X belonging to a set S C Rn is said to be the least (greatest) element

of 8§ if Xx<(>)x forevery x ¢ S.) The method of derivation used

by Mangasarian is not based on least-element arguments. In a previous
report [ 2], the authors have applied this theory of polyhedral sets having
least elements to the particular case c = 0 and established that for
every n-vector q, the linear complementarity problem (g, M) has a
solution which can be generated from the least element of a polyhedral set,
thus providing a least-element interpretation to the linear programming
formulation of the problem (q, M) which was initially obtained by
Mangasarian in [ 5]. In the present report, we extend our previous analysis
to the general case where c¢ is merely non-negative, as described at

the beginning of the introduction. Our purposes are (1) to establish the
least-element characterization of a solution to the linear complementarity
problem under consideration and (2) to demonstrate how this ''least-element
solution" is related to the solution(s) obtained by the linear programming

approach as proposed by Mangasarian. Here, we should point out that all




the linear complementarity problems, which are listed in Table 1 of [7] to be
solvable as linear programs, satisfy conditions (Ml) - (M3). Therefore the
least-element theory developed in the present report is applicable to all of
them. However, it may not necessarily be applicable to those problems
satisfying the more general conditions in Theorem 1 of [7].

It would be appropriate for us to review some of the essential results
obtained in [ 2] for the particular case ¢ = 0. Using the same notations,
we denote problem (1.2) by the triple (p,q,M) and by C the class of
square matrices M for which there exist Z-matrices X and Y such that

the following two conditions are satisfied

(C1) MX =Y
It it
(C2) r X+s ¥Y>0 forsome r,s>=0.
These are precisely conditions (M1) - (M3) with ¢ = 0. The following
proposition is an immediate consequence of the well-known theorem of

Kuhn-Fourier [ 4] on the solvability of a system of linear relations.

Proposition 1.1. Let X and Y be n Xn matrices. Then the following

are equivalent

(C2) rTX +55Y >0 for some r,s >0
u>0

(ca2) Xug0 ) =>u=0.
Yu <0

We have established useful necessary and sufficient conditions for

two Z-matrices X and Y to satisfy condition (C2). These are stated below.




Lemmg 1.2. Let X and Y be Z-matrices of the same order. Then (C2)

holds if and only if there exist a principal rearrangement with permutation

matrix P and a partitioning of X and Y such that

X X Y Y
T 11 12 T 11 12
(1.3a) P XP = , PYP=
0 o 2 ‘22
X
11 12 *
(1.3b) is a K-matrix .
YZI YZZ

Using this lemma, we have given necessary and sufficient conditions
for MeC.
Theorem 1.3. Let M, X and Y be n Xn matrices with X and Y
both Z-matrices. Then
(C1) MX =Y
T T
(C2) rX+s Y>0 for some r,s>0
if and only if there is a principal rearrangement and partitioning of M, X

and Y such that

Y 3
Mll MlZ xll XlZ 11 12
(1.46) =
MZI MZZ XZI XZZ YZI Y22
11 le
(1.4b) is a K-matrix
YZI Y22
(1.4c) X is nonsingular .

*
A K-matrix, also known as Minkowski matrix, is a Z-matrix with a non-
negative inverse.




The above-mentioned least-element result for the linear complementarity

problem (q,M) with M ¢ C is stated in the theorem below.
Theorem 1.4. Let M ¢ C andlet X and Y be Z-matrices satisfying
(C1) and (C2). Suppose (gq,M) is feasible, i.e. X(q,M) # ¢. Then
the polyhedral set
V={veR :Xv>o0, g+Yv>0}

contains a least element v. Moreover, the vector X = XV solves the
problem (g, M).

As a consequence to this theorem, we deduced that for every vector
q e Rn, the linear complementarity problem (q, M) with M € C can be

solved as the linear program (p,q, M) where the vector p is the (unique)

solution to the system of equations

peX=1f

for some positive vector f. We have also shown that the vector p
required in Mangasarian's theory can be obtained in precisely the same
way. In the last part of the report, we established several related matrix-
theoretic results, and demonstrated that C includes all the matrices
investigated by Mangasarian in [ 6].

We explain the notations used in the paper. All vectors and matrices
under consideration are real. A Z-matrix X is said to be a JSO-_m_ang
if (X + eI) is a K-matrix for every € > 0. The letters 2, Ko and K

will also denote the class of 2Z-, KO— and K-matrices respectively.




Various characterizations of K- and Ko-matrices can be found in [ 3].

We denote the range space of a matrix A by ®(A), i.e. R(A) consists
of those vectors which can be represented as linear combinations of the
columns of A. lLet M bean nXn matrix. ¥ ILJC({l,...,n},

we define

1’1 1t

1]
m. . C i Al .
= s'1 s't

-

where 1 = {i,...,is} and T = 1j .,jt} with 1511<---<155n

1 ph

and 1 <j <--+ <j <n. In particular, MII is a principal submatrix

T

of M. Similarly, if Qg e Rn, we define q; = (qi peeeadg )" . We denote
1 S

1 t

T
the summation vector (1,...,1)" by e.




2. CONNECTION WITH LEAST ELEMENTS

2.1. General discussion. Let g be ann-vectorand M an n Xn

matrix satisfying conditions (M1) - (M3) for some Z-matrices X and Y,
and some non-negative vectors r, s and c. Throughout this section,
these vectors and matrices are assumed to possess the properties just
mentioned. We shall develop a least-element study of the linear
complementarity problem (q, M) with such a vector g and matrix M.

As a consequence of our investigation, we shall establish a least-element
interpretation for the result obtained by Mangasarian [ 7] of formulating

such a linear complementarity problem as the linear program (p,q, M) with
p=rt MTs. We start by proving a lémma which strengthens condition (M3).
Lemma 2.1. Let ¢, r and s be non-negative vectors and let X and

Y be Z-matrices. If condition (M3) holds, then

(M3)! r+s>0.

Proof: It suffices to show that for every i =1,...,n, r, = 0 (s, = 0) => s >0
(ri > 0). So assume ri = 0, say. Then

0 < (rT(X +C) + sT(Y + C))i

DorX. + ), sY +s(Y 4+ ci)
fag § OB g i R

A

Y . + 3
Bl T oy
Thus si > 0. Similarly, we may deduce [si =0 => ri > 0]. Therefore

(M3)' follows. a 1




Remark. Condition (M3)' was referred to as a special case, but not as a

consequence of (M3) in [7]. In fact, if ¢ >0 (as in Corollary 1 of [7]),
the two conditions are equivalent.

We recall that if M ¢ €, the matrix X satisfying (C1) and (C2)
must be nonsingular (Theorem 1.3). The following example illustrates

that there can be singular matrix X satisfying (M1) - (M3).

1 1

l-l)' The problem (g, M) has

Example 2.2. Let q = (:f) and M = (

, 3/2 2 g L
two solutions, namely, (1/2) and [} I£ X=d o o), Y=, _%),
0 1 1

L |
"
—
—
n
1

(0) and c = (%), then conditions (M1) - (M3) are satisfied.
Nevertheless, X is singular. Moreover, it is not hard to verify that M {C. O
The fact that there exist such singular matrices X indicates that
in order to develop a least-element theory for the linear complementarity
problem (g, M), one should not merely concentrate on the range space
of X. In fact, the same example above shows that R(X) N X(q, M) = ¢.
Later in our discussion, we will see that this latter relation always holds
if X is singular and the stronger condition (C2) is imposed (see
Proposition 2.26 and the remark following it).
It is clear that if M ¢ C, then conditions (M1) - (M3) are satisfied
for every vector q. Nevertheless, if a matrix M satisfies (M1) - (M3)
for some vector q, it does not necessarily follow that M ¢ C. Example 2.2

illustrates this fact. The following provides another example.




Example 2.3. Let q = (_:) and M = (

). Then conditions (M1) - (M3)

2 -1
oy ‘ 0 1 0 -10 1o
are satisfied with = Sl = = =L (e = ]
r (l)’ (0), g (2), X = ( 0 2) and Y (_1 0)
g S T
We show M ¢ C. Suppose not, then there exists (-x 2 ¢ Z such that
21 22
=} INE %, =% -x - +
& T - "%y Fa T
= Z
S | + - = i
o L T T " W 1 T B
X -X -X =X X, +x
2
and (rl’rz) —xll x1 % (sl’ SZ)[ lel + x21 --sz1 - x?-2 s SO
21 22 10K 21 1.2 22

and s_. It follows that 2x + x <0

some non-negative scalars r. ,r_,s
9 3 x By 2 11 21—

which implies x < -1 X, <0. Similarly, x

. : .
g =7 %y <0 implies

12 ¥ %55

x‘22 < -xl‘2 < 0. Therefore Lemma 1.2 implies that

11 7l L2 22
2 + x 2X o
ML i2° T2z
= -0 X + x
2
In particular, det M el - e >0. Since detM <0, it
2X + x -2x ~ X
11 21 12 22
follows that
o 1
(i728 9. det S S SR ese 0,
X5 X5 L 22 1221
Furthermore,
+ <0 => < = < O,
g S Wi 1 T R
< - < 0; S icti
We have shown that Xyy S %5 S 0; thus X11X22 s lexlz contradicting
(2.1). Therefore ( _i) {C. 0




The above examples illustrate that the present class of linear
complementarity problems (g, M) with g and M satisfying (M1) - (M3)
is a genuine extension of the previous class of problems (g, M) with
M ¢ C. Example 2.3 was used originally in [ 7] by Mangasarian for
another purpose.

2.2. The set Y. We define
U= {ue Rn:u_>_0, Xu<o, Yu<o, cTu= i
This polyhedral set % plays a very important role throughout our whole
discussion. It may be empty, for example, if c = 0 as in the case of
M € ¢. The following example illustrates that it can sometimes be non-
empty as well.
3 4 ~2
Example 2.4. Let M =1 0] and g = ( 0). Then with ¢ = s = e,
=il 1
=] =2

1 O) , conditions (M1) - (M3) are
0 2

satisfied. In this case, u =

2/5
(2/5) € 2. We shall say more about this

1/5

example later. (&
The proposition below describes the relationship between vectors
in % (if any) and solutions to the linear complementarity problem (q, M).

Proposition 2.5. If ue€ %, then x = -Xu is a solution to (q, M).

Proof: If x = -Xu where u ¢ ?%y, then x> 0; moreover,




it it

q + Mx q - MXu

qg-(Y+ ch)u

-Yu>0,

1

i.e. x e X(g,M). We also have
0<r'x+s(q+Mx)
= -(rTX + STY)u <0
Therefore, foreach i =1,....,n,

% = 4 =0
rX = s/la + Mz},

‘If xi >0, say, theﬁ ri = 0. Condition (M3)' implies si > 0 which
gives (q + Mx)i = 0. Therefore the vector x defined above solves the
problem (q, M). 0]
Remark 1. In the proof above, the assumption that X and Y are Z-matrices
is required in order for condition (M3)' to be applicable. Therefore, if
condition (M3)' holds by itself (as in Corollary 1 of [7]), then the
proposition is valid for any matrices X and Y (which are not necessarily
Z-matrices) satisfying conditions (M1) and (M2).
Remark 2. The feasibility of the problem (g, M) is not a requirement,
but a consequence of Proposition 2. 5.

Proposition 2.5 shows that if the set % is nonempty, then a
solution to the linear complementarity problem (g, M) can be obtained

by first finding any vector u in %, or equivalently, solving the system

of linear inequalities




u>0, Xu <0, Yu<0 and cTu =38 |
and then setting x = -Xu. The question of whether % is nonempty is
itself answerable by linear programming. The next proposition shows
that if % # ¢, then any vector x such that x = -Xu for some u e U
actually solves the linear program (p,g, M) where p =r + MTs.

Proposition 2. 6. If ue?%, then X = -Xu solves the linear program

(p,q,M) with p=r +MTs.

Proof: If x ¢ X(q, M), then

pTx = (rT + sTM)x > -qu h

On the other hand, the proof of the last proposition shows that

x = -Xu € X(q,M) if U e€%. Furthermore, with such an X, we have
pT§ = -(rT + sTM)XU
T = T
= —( X+sTY)u-qu = =54q.
Therefore, any such X solves the linear program (p,q, M). a

Corollary 2.7. If M is nondegenerate (i.e. every principal submatrix

of M is nonsingular) and if % # ¢, then the linear program (p,q, M)

with p=r+ MTs has a unique solution X. Furthermore, x = -Xu for
every ue?.

Proof: That the linear program has a solution x follows from Proposition 2. 6.
To show its uniqueness, let x be a solution to (p,q, M). Then the

proof of Proposition 2. 6 shows that, in fact,

rTx = sT(q + Mx) = 0.

=]2=




¥ 1= {1 e 0} and J={l,...,nA\I, then x must necessarily
satisfy the following system of equations

0 I 0 X
(2:2) + =0.
M M
L ) M 1 B
L Here we have used the fact that sI >0 by (M3)'. By the nondegeneracy

of M, the system (2.2) has a unique solution. This establishes the

uniqueness of x. The last conclusion of the corollary is immediate.

]

Remark. The matrix M in Example 2.4 is degenerate; nevertheless, the
proof of the corollary shows that any solution to the linear program (p,q, M)

must satisfy g + Mx = 0. Since M is nonsingular, the LP-solution

2/5
2/5) is unique. This solution was also obtained in [7] by actually

/5

£ =

applying the simplex method to the linear program. Its uniqueness was
not proven there.

The results above establish the relationship between vectors in %,
solutions to the linear complementarity problem (q, M) and solutions to
the linear program (p,q, M). In the sequel, we divide our discussion into
cases. In each case, we shall construct a polyhedral set having a least
(or greatest) element and demonstrate how a solution to the linear comple-
mentarity problem can be generated from this element. In the analysis, we
shall need two fundamental results from lattice theory. These are stated

in Propositions 2.9 and 2.10. Their proofs are easy and are omitted.

-]3=




:
Definition 2.8. Let S be a subset of Rn. Then S is said to be a : ‘

n
meet (join) semi-sublattice (of R') if for every s,te S, the meet (join)

of s and t, defined as the vector u = (ui) where u, = min(si,ti)

(max(si,ti)) for every i, belongs to S. The set S is bounded below

ES n *x
(above) if there exists a vector s ¢ R such that s >(9) s for every

g e 8.

Proposition 2.9. The following are equivalent:

1) L is a polyhedral meet (join) semi-sublattice of R".
2) L={se¢R" :As>b} for some matrix A and vector b, with A
having at most one positive (negative) element in each row.

n
Proposition 2.10. Let L be a nonempty meet (join) semi-sublattice of R .

If L is closed and bounded below (above), then L has a least (greatest)

element. Furthermore, this element can be obtained by solving

(2.3) minimize (maximize) fo subjectto x € L
for any positive vector f.

We should also mention that a least (greatest) element of a meet (join)
semi-sublattice L of Rrl actually solves the program (2. 3) for any non-
negative vector f and it is the unique solution if f is positive.

In the theorem below, we describe a polyhedral set with a least
element and show how this element can easily generate a solution to the

problem (g, M) in the case % # ¢.

-14-
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Theorem 2.11. Define

n
=0 {ueR :u<0, Xu>0, Yu>0, cu 2 -1} .
i=1

Then J has a least element u. Furthermore, if % # ¢, then cTag-l

and the vector X = -X‘TL solves the linear complementarity problem (g, M).
cu

Proof: Proposition 2.9 implies that 3 is a meet semi-sublattice of Rn.
It is obviously closed and nonempty because o ¢ J. We show that J
is bounded below. Let u ¢ J, clearly u, > -l/ci for every i el

where I = {i A 0}. Furthermore, letting J = {i : e, = 0}, we have,

(2.4a) XHuJ 2 —XHuI > —XHdI

and

(2. 4b) ¥hy2 ~¥ou. > Yo,

where d = (di) is the vector with di = -l/ci for i €I and o other-

wise. On the other hand, it follows from condition (M3) that

T T T T
fpliyy ¥ Byl et Ry 20,

i.e. the Z-matrices XH and YH satisfy condition (C2). Therefore by

X1
Ty

is Minkowski. This fact, together with inequalities (2. 4a) and (2. 4b)

Lemma 1.2, the matrix ( contains a complementary submatrix which

implies that u_ is bounded below by some constant vector. Hence 3 is

J

bounded below. Therefore it has a least element u by Proposition 2.10.

-]5=




Clearly -ueJ if uey. Thus, u<-u for every u ¢ %. Hence

T
cu<-1 if Y+ ¢. Itis then clear that —LI‘,— € % . Therefore the last
cu
assertaion of the theorem is an immediate consequence of Proposition 2. 5.
Remark. The assumption % # ¢ is essential in order for the vector x
7jie
in the theorem to be well-defined, because otherwise, c'u might be
zero (e.g. c = 0).
Example 2.12. Consider the problem (q,M) in Example 2.2. We have

U = {(g)} and

u
F= 6 Ve B W20 and -2<u,<0}.
u 1 2
2
0
The least element of J is (__2).

t

N

This is the solution

}/ ,0) (p,Q, M).

Both are solutions
to (q,M).

Fig. 1. Y+ ¢.

_16_

obtained in Theorem 2.11.
It is also the unique solu-
tion to the linear program




Combining Theorem 2.11 with Corollary 2.7, we conclude that if

M is nondegenerate and if % # ¢, then the (unique) solution to the

linear program (p,q, M) is given by the vector X = -X —l‘,;,—- where u
cu

is the least element of J. This result provides a least-element interpreta-

tion to the solution of the linear program introduced by Mangasarian.

2.3. The case where % = ¢ and X is nonsingular. Having completed

our discussion of the case Y # ¢, we proceed to investigate the case
U = ¢. We establish the following important lemma.

Lemma 2.13. If % = ¢, then the following implication holds
(2.5) Xu <0 =>u=0.

Proof: Suppose there exists a nonzero vector u such that u>0, Xu <0
T : u
and Yu < 0. Then we must have c u = 0 because otherwise _T— €Y

cu
contradicting the assumption. Thus, Cu = 0. Hence,

0 < [rT(X +C) + sT(Y + C)]Ju
< (rT + sT)Cu =0
which is a contradiction. ]

In fact, the converse of Lemma 2.13 holds, namely, if (2.5) holds,
then % = ¢. Now, by Proposition 1.1, condition (2.5) is an equivalent
formulation of condition (C2). Therefore, adding the assumption % = ¢
to (M1) - (M3) is actually equivalent to replacing conditions (M2) and (M3)

by the single stronger condition (C2).

_17-




Corollary 2.14. Let % = ¢. Then

Proof: Indeed, if there exists a nonzero vector
i 3
and c'u = 0. Then it follows from (M1) that

X
impossible because by Lemma 2.13 above and Lemma 1.2, the matrix (

uJO,Xu=0=>cTu¢0.

u such that Xu = 0 !

= 0. But this is

v/

contains a nonsingular complementary submatrix; this latter fact implies !

u = 0, contradicting the assumption.

We have given an example earlier illustrating that there can be

singular matrix X satisfying conditions (M1) - (M3). The proposition

below shows that if

U = ¢, such matrices have rank at least n - 1.

Proposition 2.15. If % = ¢, then rank(X)>n - 1.

Proof: Suppose rank(X) <n - 1. Let u1

independent vectors

such that Xu1 = Xu2 =

0 and ca =¢

be two linearly

T T
ool -1

The existence of these vectors follows from the assumption and Corollary 2. 14.

We then have

Thus,

But we also have

1 2

Therefore, u = u .
It is clear that there are instances when X

¢ = 0. The example below indicates that the case where rank(X) = n - 1

2
Yul + q(cTul) = Yu?' + q(cTu ) =0.

]
=
N

1]

This contradicts the linear independence of ul and uz. O

..18..

is nonsingular, e.g.




is also possible even if % = ¢. Later in our discussion, we shall provide

necessary and sufficient conditions for X to be nonsingular (see Theorem 2.22).

0
Example 2.16. lLet q = (_(1)) and M = (_l i). The problem (g, M) has
. 0 e S oo 1l i e Fen
a solution (1). Now let X = (0 O)’ Y= (0 l)’ cC =€, r= (0) and
i

s = ((l)). Then MX = Y+qc® and rX+s ¥>0. Therefore ¥ = é.
Nevertheless, X is of rank 1. 0

In the sequel, we shall first establish the least-element results

for the case where X 1is nonsingular. Then we shall prove two characteriza-
tion theorems having to do with the nonsingularity of X. Finally, we
shall investigate the last case, namely, where X hasrank n - 1.

If X 1is nonsingular, then the linear complementarity problem (g, M)

is equivalent to the following complementarity problem (LECPl):

q(l +cTu)+Yu_>_0, Xu >0 and [q(1+cTu)+Yu]TXu= Q.
The equivalence is based on the transformation x = Xu. It is clear that
x is a (feasible) solution to the problem (q, M) if and only if u = X-lx
is a (feasible) solution to the problem (LECPI). Let 31 denote the
feasible set of the latter problem, i.e. ’

3 = fueR® gl +cu) + Yus0, Xuso}.

T
Proposition 2.17. If % = ¢, then 1 +c u#0 forevery uce 31.
T
Proof: Suppose there is a u « 31 such that 1 + c u = 0. Then it follows

X
) contains a Minkowski comple-

that Yu > 0, Xu > 0. Since the matrix (Y

mentary submatrix, we must have u >0 contradicting the assumption that

1+clu=0. -

_19—




By the convexity of 31 it follows that one and only one of the

following two statements must hold:

(2. 6a) 1+ cTu >0 forevery u e El

(2. 6b) 1 +cTu <0 forevery uc3 .

Lemma 2.18. Let % = ¢ and 3, # ¢. Suppose (2.6a) ((2.6b)) holds. Let

4 {veRn:q+YvZ(§)O, Xv> (<) 0} .

1
Then il has a least (greatest) element v satisfying ch <(>1.
Furthermore, (q + Y\?)T(XV) =10l
Proof: Proposition 2.9 implies that Jl is a meet (join) semi-sublattice
of R%. Itis obviously closed. The fact that ();) contains a Minkowski
complementary submatrix implies that .91 is bounded below (above). We
show that it is nonempty. Let u e 31 satisfy 1 + cTu > (<)0, then
it is not hard to see that the vector

(2.7) v = —2

T
I + ¢ u

belongs to .&l. By Proposition 2. 10, .&l has a least (greatest) element V.

That Vv satisfies cTV < (>)1 is clear because VvV <(>)v and ch <(>)1
where v is the vector defined in (2.7). To show that v satisfies the
complementarity property, we refer the reader to the proof of Lemma 3.10

in [ 2]. 0

Remark. The polyhedral set Jl does not depend on the vector c. If

(2. 6a) holds, this set .&1 is precisely the set V mentioned in the introduction.
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The following result generalizes Theorem 1.4 pertaining to the

problem (g, M) with M ¢ C which corresponds to the case c = 0.

Theorem 2.19. Let % = ¢. Suppose X is nonsingular and the problem

(g, M) is feasible. Then the vector
(2.8) x=X

ST e
T
1 -c v

where v is the vector obtained in Lemma 2.18, is a solution to the

linear complementarity problem (q,M).
Proof: In fact, if x € X(q, M), then u = X-lx € 81. Therefore the
vector v is well-defined and so is u = ‘——V—: . It is easy to show
1=="c i sr

that u solves the problem (LECPI). Therefore by the equivalence of
the problems (g, M) and (LECPI) mentioned earlier, it follows that the
vector x defined in (2.8) solves the problem (g, M). 0

Theorem 2.19 shows how, under the assumptions in the theorem, a
solution to the linear complementarity problem (g, M) can be generated
from the least (or greatest) element of the polyhedral set $1. One
notices that in some instances, the linear complementarity problem has a
solution generated from the greatest element of a polyhedral set. This
may seem, at first glance, somewhat inconsistent with the title "A least~
element theory ...' of the report and with the phrases 'least~element

solutions', '"least-element characterization", etc. ... which have been

used throughout the report. However, it is not hard to see that such

=)=




greatest-element results can always be changed into least-element results

by a very trivial modification, namely, by considering the negative of
the polyhedral sets having the greatest elements. We have not made this
change of variables in Lemma 2.18, and will not do so later because we
want to present the results in their most natural format.

In the sequel, we establish a relationship between the vector x
generated in Theorem 2.19 and the solution(s) to the linear program
(p,q,M) with p=r+ M5 Specifically, we show that X solves any
such linear program; moreover, it is the unique solution if the vectors r
and s satisfy the stronger condition (C2).

If X is nonsingular, then under the nonsingular transformation,

x = Xu, the linear program (p,q, M) is equivalent to

(2.9) minimize (pTX)u subjectto g+ MXu >0 and Xu >0 .
Noting that

T T

pX =i+ sTM)X = (rTX + sTY) + (qu)cT

we may write (2.9) as

(2.10) minimize (rTX + sTY)u + qu(l + cTu) subject to u e 51 .

In order to simplify the following discussion, we assume that (2. 6a)

holds. Since Vv is the least element of .&l, it solves the linear program
. i :
(Z2:11) minimize f v subjectto v e 31

for any nonnegative vector f, and it is the unique solution to (2.11) for

any positive vector f. It is then easy to deduce that the vector

a2
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(2.12) n = _v___T_ (or equivalently, v = “—,IT‘)
1-¢cv l1+cu

solves the (fractional) program:

T
o= oz f-u ,
(2+13) minimize —— - subjectto u e 31
1 +cu
for any nonnegative vector f, and it is the unique solution to (2.13) for

any positive vector f.

Theorem 2.20. Let % = ¢. Suppose X is nonsingular and (g, M) is

feasible. Then the vector X (defined in (2.8)) solves the linear program
T

(p,q,M) with p =r+ M s. Moreover, it is the unique solution to any

: . il 1t
such linear program with r X +s Y > 0.
Remark. This theorem is valid no matter which one of the two inequalities
(2.6a) and (2. 6b) is valid. To simplify the proof below, we continue to
assume (2. 6a) holds.

Proof of the theorem: It suffices to show that the vector u (defined in

(2.12)) solves (2.10) and u is the unique solution to (2.10) if

rTX+sTY>O. Let ue.’}l, then “—l—eﬁ. Thus

1 +cu
(rTX+sTY)——?“ _<_(rTX+sTY) #
l1+cu 1 +cu

which implies

e
x 1 +¢ u

S 0
(2.14) (r'X+ STY)u + qu(l + cTﬁ) < [(rTX + sTY)u + qu(l +cu)]

3
1% 6




Furthermore, we have

= T
1+ ¢ u G VT
Hence,

1 + CTU
1 + cTu
On the other hand,
rT(

1) T
(rX+sTY)u+s q(l+cTu)= Xu)+sT(q+(Y+ch)u)_>_0.

Therefore, for wu e 31,

it iy s
(r'X+s Y)u + qu(l + cTU) < (rTX + sTY)u + qu(l + cTu)
i.e. u solves (2.10).
Conversely, if u solves (2.10), then (2.14) must hold as equality.

Therefore, we have

(rTX+sTY)———uT = (rTX+sTY)——T
I +cu 1 +c¢c u

it
i.e. u also solves (2.13). Now if r X + sTY >0, it follows from the

uniqueness of U that u = u. 0

Example 2.2]1. Let q = (_i) and M = (—; ;). The problem (g, M) has
) 1 0 _,~3 0 e A _ 9 L

solutions (0) and (1). I X = 0 2), e (—1 4), r= (l), s (0)

and c = ((2)), then MX = Y+ch and rTX+ s Y>0. Itis nothard to

show that M { C.

e




LUARLRAL

(0,1)

This is the solution given by
(2.8) in Theorem 2.19.

Fig. 2. % = ¢ and X nonsingular.

V. =0
1
15
E —3—+ -v. t4v_=1
e 2 —~ 1 2
— 1 —
= =
T—:J\\U\HIM >v =0
(-2{0) @
/

least element

Fig. 3. The set .&1.
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Before proceeding to study the case rank(X) = n -1, we prove
two theorems. The first of which characterizes the nonsingularity of X;
whereas the second provides necessary and sufficient conditions for
(2.6a) and (2.6b) to hold. As a consequence of the theorems, we deduce
that the assumptions in Lemma 2.18 and Theorem 2.19 are actually
equivalent.

Theorem 2.22. The following two conditions (2.15) and (2.16) are equivalent:

(2.15) X is nonsingular
(2.16) there exist a principal rearrangement, with permutation matrix P,

and partitioning of X, Y, g and c¢ such that

. X1 %12 5 Y11 %2
(2.16a) PREell o R e
21 22 2F 22
T b T i
(2.l6b) Pqg-= 3 Bre = 5
9 2
-l .
(2. 16c) X11 and (Y22 - YZIX“XlZ) are nonsingular
(2.16d) R P R e e

2 T T 7 [ & (1 7 2
Proof: That (2.15) implies (2.16) is trivial. For the converse, it suffices

(see [1]) to show that the matrix X22 -X Nty is nonsingular. We have

2171112
M M.V % Y Y L
11 W “ie 4 B - 1
2 + TP,
My My i\ % %5 Y1 Y22 q,¢
3
-26_




W ——————

Solving for le in
X T
Mo X1 P MXp, = Y, H9,0
gives
o ;
Moo= Y. -M.%X W' x b,
21 = Vg 22%21%1 Y905
Substituting this latter equality in
I T T O M PR
21712 22722 ™ *22 Y95,
yields
M%< X Ja iy + Y X dsqiet e X )

22" 22 21 11 12 22 21° 11 t12 2 2 121 12

ST R A B
= (Y. - ¥ X 'x PAY . =¥ X % “ :
(Yyo = Yo X1 X I+ (Y, - Y, X (X 5) "a,(c, = ¢ X X )]

Condition (2.16d) implies

-1 T T
+ - -
det[I +(Y,, Ylellez) a,(c, Clxllxlz)l
i i
= + - i X ~
1412, ClxllXIZ)( 22 Y21x11 12’9 * ©
This establishes the nonsingularity of X -X. X X

25 1112

Remark. The argument used above is a generalization of the one in

Theorem 1.3 for the case M ¢ C. In the proof, we have used the

condition (M1) only. So in fact, the theorem provides necessary and
sufficient conditions for the matrix X (not necessarily Z-matrix) satisfying
MX = Y+ ch for some matrices M and Y (not necessarily Z-matrix)
and some vectors q and c¢ (not necessarily non-negative), to be

nonsingular.
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Theorem 2.23. Let % = ¢. Suppose Z}l # ¢. Then (2.6a) ((2.6b)) holds

if and only if there exist a principal rearrangement with permutation matrix

P, and partitioning of X, Y, q and c such that

T 11 12 T 11 Y12
(2.17a) P XP = X SRSPRYR = y
21 22 21 22
. ql i cl
(2- l7b) Bigi= q . Pc = C
2 2
11 X12
(2.17¢) e K
YZI YZZ
T T, -1 -1
: + - -~ SH(<)I0s:
\&:1id) L ¥iey = e Xy X M0 = X %0112, > (90
Proof: ''Sufficiency'. Let u e 31. Then we have
0 X X u
3 + 11 12 1 Sl
qz(l +cu) Y21 Y22 u,
Xll XIZ ¥
Condition (2.17c¢) implies that > 0; thus
Y. Y
21 Ze
-1
X X 0
11 12

(2.18)
Y Yo 9,

&
Let t = ( 1) satisfy
tz

X1 %2\t Y
Y1 Y22/t 9,
-28-




Then,

il

LRl T
and,
b =i eyl ol
2 22 21 11 12 2
We can write (2.18) as
t(1 +cTu) +u>0
which implies
15
(2.20) (1 +ct)1 +cTu)21 .

Now, by condition (2.17d)

T B Ry
2. Fotg = i X
(2.19) F+et=1 +(c2 clx11 12)t2
; T T.-1 = e
=1+{c; - o XX )Y, - ¥, X, 1 X5) g, > (0.

Therefore 1 +clu > (<)0 for every u e 31, i.e. (2.6a) ((2.6b)) holds.
"Necessity''. The existence of the permutation and partitioning such that
conditions (2.17a) - (2.17c) are satisfied is an immediate consequence
of the assumption % = ¢ and Lemma 1.2. So it remains to verify (2.17d).
The deduction above shows that (2.20) is valid for every u e 31- Now
if 31 # ¢ and (2.6a) ((2.6b)) holds, then it follows from (2. 20) that
e cTt > (<) 0, or equivalently, (2.17d) holds. Q

We have seen that if X is nonsingular and if the problem (q, M)

is feasible, then 31 # ¢. Combining Theorems 2.22 and 2.23, we

conclude that if % = ¢ and if 3 # ¢ then (q,M) is feasible (in fact,

has a solution) and X must be nonsingular.




Corollary 2.24. If % = ¢, the following are equivalent

(2.21) X is nonsingular and (g, M) has a solution (given by (2. 8))

(2.22) 31 ¢ .

2.4. The case where Y% = ¢ and X is singular. In the rest of this

paper, we investigate the remaining case, namely % = ¢ and rank (X)

0
= nh= 1. Let u be the (unique) vector satisfying

0 0
Xu =0 and cTu =1.
The existence of such a vector follows from Corollary 2.14. Then, it
follows that

0
(2.23) q ==Y

Let u1 be a nonzero vector satisfying XTu'] = 0. It follows from
elementary linear algebra that, for any x e Rn, there exist u ¢ R
and a ¢ R1 such that
(2.24) X = Xu+a{ul

Under such a representation, we have, by (2.23)

q + Mx C1+MXu+onul

q(l + cTu) + Yu + aMu1
1

1]

Wu =1 + e wa ] +aMe

Proposition 2.25. Under the identification (2.24), the linear complementarity

problem (g, M) is equivalent to the problem (LECPZ) of finding a vector

u e Rr1 and a scalar a such that
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arMul +Y[u-(1+ cTu)uO] >0

arul + X[u-(1+ cTu)uo] >0

[aMul + Y(u-(1+ cTu)uO)]T[ au1 + X(u - (1 + cTu)uO)] =0.

Let 32 denote the feasible set of (LECPZ), i.e.

32 = {(:) € Rn+l : aMul +Y(u-(1+cTu)u0) >0, aul +X(u-(1 +cTu)u0) 5073 .

Proposition 2.26. If %Y = ¢, then a # 0 for every (Z) € 32.

Proof: Suppose there exists (::) € 32 such that a = 0. Then

Y(u- (1 +cTu)uo] >0

X[u-(1+ cTu)uo] >4a .
- a 0
Hence, by Lemma 1.2, it follows that u - (1 + c u)u > 0. Thus

0 gcT[u -(1+ cTu)uO] = -1

which is a contradiction. O
Remark. An equivalent formulation of the conclusion in Proposition 2.26
can be stated as X(g, M) N R(X) = ¢.

By the convexity of & it follows that one and only one of the

2’
following two statements must hold:

(2.25a) a >0 for every (Z) € &’2
(2.25b) a <0 for every (:) € 32 p

Lemma 2.27. Let % = ¢ and 3, # ¢. Suppose (2.25a) ((2.25b)) holds.

Define

$2= {v e Rn:Mu1+Yv3(§)0, ul+Xv3(5)0} .

«3]-




Then }a has a least (greatest) element v satisfying CTV < (2)0.

Furthermore, (Mul + YG)T(ul + Xv) = 0.

: u ) | SR  JIR) |
Proof: If (a) € 32, then v = a(u (1 +cuju) e }2 and cv==7.
The rest of proof proceeds in the same way as in the proof of Lemma 2.18. Q

Theorem 2.28. Let % = ¢. Suppose rank(X) = n -1 and the problem

I I v

(q, M) is feasible. Then the vector

(2.26) X= - —(Xv+u)

where v is the vector obtained in Lemma 2.27, is a solution to the linear
complementarity problem (g, M).

Proof: The assumptions in Lemma 2.27 are satisfied. Therefore, % g

well-defined. It suffices to show that u = - —~ and @ = - _El“— solves
T & cv

the problem (LECPZ). Noting that 1 +c u = 0, we can easily deduce

<|

that (;) indeed solves (LECPZ). This establishes the theorem. a
Having demonstrated how, under the assumptions of Theorem 2.28,

a solution to the linear complementarity problem can be generated from the

least (or greatest) element of the polyhedral set ﬁz, we next establish

a relationship between this solution X and the solufcion(s) to the

linear program (p,q, M) with p =r+ MTs.

Theorem 2.29. Let % = ¢. Suppose rank (X) = n-1 and (q,M) is

feasible. Then the vector X (defined in (2. 26)) solves the linear program

(p,q,M) with p=r+ MTs. Moreover it is the unique solution to any

T T
such linear program with r X +s Y > 0.
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Proof: Assume for simplicity, that (2.25a) holds. The argument which

follows is similar to that of Theorem 2.20. Let x = Xu + au1 € X(q, M),

T

0
then v = i’(u -(l+cu)u) e .8«2. Hence we have

v < ;l(u -1+ cTu)uo)
which implies
CTV <- 1
a
Moreover, by (2.23),
(2.21) (rTX + sTY)V_g ;l(rTX + sTY)(u -(1+ cTu)uO)

[(rTX + sTY)u v qu(l + cTu)] .

1

R

Furthermore,

rT(Xu + aul) + sT[q + M(Xu + aul)] >0 .
Combining the above inequalities, we deduce,

P = (r +5 M)(- = (X7 +u))

c Vv

= - IT (rTX + sTY)V + qu(cTV) + (rT + sTM)ull
c'v
1 1 T

=" E{(rTX £ sTY)u +alrr + s M)l +sTq(l + cTu)}] - s'q
&V

= (- LT‘)(;lz)[rT(Xu +au') + sT(q + M(Xu + au)] - s'q
cv

< (rT + sTM)x = pTx :

Therefore X solves the linear program (p,q, M).

-33~
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Conversely, if x is a solution to (p,q,M), then we must have

iR T -
equality in (2.27). If r X+ s Y >0, then by the uniqueness of v, it

follows that v = i(u = (i » cTu)uO). Thus o = - IT and Xu = - —l’i‘— Xv.
cv e v

X. This establishes the

i
>
c
-+
R
c

"

L}
3
-+
c

N

]

Therefore, x
theorem. 0

We conclude this paper by proving a result (Corollary 2. 31) which
strengthens Corollary 4 of Mangasarian's report [ 7] where it was shown
thatif n >3 and M 1is a positive matrix which is diagonally dominant

column-by-column, that is, m, > z mij’ j=1,...,n, then conditions
i#])

(M1) - (M3) are satisfied (in fact for every n-vector q).

Proposition 2.30. Let M be an n Xn matrix satisfying

(2.28a) MX = Y for some X,Y e Z

(2.28b) rTXZ 0 for some r >0

(2.28c) Y = (Yij) is such that Yij <0 forevery j#i.
Then M € C.

Proof: Let € >0 be small enough such that Y + eM ¢ Z. Then
M(X+¢el) =Y+eM and X + el € K. Therefore M € C. Tl

Corollary 2.31. Let n>3 andlet M be a positive n Xn matrix

which satisfies either of the following conditions:

o ) = lyeoiyn

(2.29a) diagonal dominance column-by-column: mjj B Z mi]

i#j

(2.29b) diagonal dominance row-by-row: mii > Z mij’ A RPN I
#

-

Then M e C.

-34~
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Proof: We may without loss of generality, assume that M has been

normalized so that it has ones on the diagonal. Let M = I+ F where

F=( ), F,=0 and F,, =m, for i#j. Define X=1-F and
ij ii ij ij

Y=MX=1]- FZ. Clearly X and Y € Z. Furthermore, it is easy to

see that condition (2. 28c) is satisfied. We show that (2.28b) is also

satisfied. It is clearly satisfied if (2.29a) holds. Now, if (2.29b) is true

’

then X e KO (by Theorem (5.4) in [ 3]) and X is irreducible (see [8]).
These two properties of X imply (2.28b) (by Theorem (5.8) in [ 3]).

Consequently, by Proposition 2.30, M € C. 0
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